Nuclear Astrophysics Opportunities for Proton-rich Nuclei

Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019

Major Open Questions in Nuclear Astrophysics:

How does ultradense matter behave?

Dense matter & CCSN shock-driven nucleosynthesis

X(⁴⁴Ti) is a core collapse supernova explosion mechanism diagnostic, where observations can be compared to calculations:

B. Grefenstette et al. Nature 2014

A. Wongwathanarat et al. ApJ 2017

...but X(⁴⁴Ti) is sensitive to nuclear reactions, often on proton-rich nuclei

Subedi, Meisel, & Merz. In prep.

Dense matter & CCSN shock-driven nucleosynthesis

CCSN shock propagation drives a complicated network of nuclear reactions, with X(⁴⁴Ti) sensitive to p and α -burning

The origins of p-nuclei, in the wake of the CCSN shock

The most useful constraints for γ -induced reactions come from measurements of the inverse, obtaining nuclear properties for HF calculations.

E.g. αOMP impact:

CCSN neutrino-driven wind nucleosynthesis

For $Y_{\alpha} > 0.5$, p and α capture to ~Fe & (n,p) reactions short-circuit β -decay to get to higher Z

This is a candidate site for "LEPP" elements

CCSN neutrino-driven wind nucleosynthesis

The break-out temperature from the **NiCu cycle** strongly influences the vp-process extent, as do masses and reaction rates for higher-Z nuclei (Wanajo et al. 2011)

 ${}^{56}Ni(n,p){}^{56}Co(p,\gamma){}^{57}Ni(n,p){}^{57}Co(p,\gamma){}^{58}Ni(p,\gamma){}^{59}Cu(p,\alpha){}^{56}Ni$ [vs ${}^{59}Cu(p,\gamma){}^{60}Zn$]

Nova nucleosynthesis: dumping H onto a white dwarf star Recurrent explosions synthesize up to ⁴⁰Ca (and beyond?) with a potentially rich set of observables

Nova nucleosynthesis: dumping H onto a white dwarf star

\$\$<**AL @**

Dense matter & X-ray bursts: dumping H onto a neutron star

X-ray burst light curves can inform the dense matter EoS by constraining NS Mass & Radii

... but this is sensitive to nuclear reaction rates

Dense matter & X-ray bursts: dumping H onto a neutron star

A well defined (modest) list of priority reaction rates are known ... for one set of conditions!

Downstream effects of XRBs on the neutron star crust

Downstream effects of XRBs on the neutron star crust

Environment conditions during So, different excitation energies can be the light curve impact ... of interest in the compound nucleusaren't necessarily the same as for the abundance impact. GW(0.8GK) GW(0.4GK) X(59) **E**_{CM} D 0.009 ⁵⁹Cu + p ~0.8GK 0.008 ~0.4GK 0.007 0.006 0.005 0.004 3 0.003 ⁶⁰Zn 0.002 10 [cm³/mol/sec] 10-2 Merz & Meisel, In prep. 0.001 10-4 0 ...which explains why an 10-6 20 120 140 100 10-8 (p.g) (p.a) (p.a)×100 enhanced (p, α) reaction 10⁻¹⁰ Reduced Rate is found* to impact the 10-12 LC, but not X(59). X(59) 10 20 40 60 80 100 120 140 *Meisel, Merz, & Medvid, ApJ 2019 0.3 0.4 0.2 1 1.1 0.6 0.7 0.8 0.9 Time (seconds) *Cyburt et al. Ab/ 2016

Column Depth

Nuclear Astrophysics Opportunities for Proton-rich Nuclei (Zach Meisel, Ohio University)

T [GK]

α

No need to "wait for FRIB", there's plenty of exciting work to do now

Available in-flight radioactive beams at ATLAS as of January 2019

(+complementary work to do later)