β-Delayed Neutron Emission Studies of Trapped Ions at CARIBU

Scott Marley Louisiana State University Workshop on Nuclear Astrophysics Opportunities at ATLAS ANL, July 13th, 2019

β-delayed Neutron (βn) Emission

Nuclear Structure – Common decay mode for n-rich nuclei. Information on level densities and decay widths for states above S_n

Nuclear Astrophysics – Influential to *r*-process nucleosynthesis; impacts elemental abundances at late times

Nuclear Energy – Control & operation of reactor (kinetics), safety, and impacts current and future reactor designs

Stockpile Stewardship – properties of fission fragments of great interest; identification

r-process nucleosynthesis: nuclear data needs

Rapid neutron-capture process responsible for about half of elements formed from Fe/Ni to U

Path defined by:

- astrophysical environment (i.e. CCSN, NS-NS merger)
- properties of nuclei populated

Nuclear Data necessary to improve models and help constrain astrophysical site(s) of the r-process:

- Nuclear masses
- (n,γ) rates
- β-lifetimes
- β-delayed neutron emission probabilities
 (P_{xn}, x=1,2,3...)

Studies of βn emission can inform on three of the four above...

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 ³

βn emission in r-process nucleosynthesis

120 -

Proton Number (Z)

βn emission plays a role in the late stages of the r-process during neutron freezeout and impacts decay back to stability

Increasingly dominant decay mode for neutron-rich nuclei

If r-process is colder:

- spends little time in (n,γ) - (γ,n) equilibrium
- path pushed out toward the drip line where several neutrons can be emitted per β decay

Extreme processes:

 yield heavy isotopes that undergo fission and contribute n-rich fragments (β,βn,βγ)

'cold' r-process

βn emission in r-process nucleosynthesis

βn emission plays a role in the late stages of the r-process during neutron freezeout and impacts decay back to stability

Increasingly dominant decay mode for neutron-rich nuclei

If r-process is colder:

- spends little time in (n,γ) - (γ,n) equilibrium
- path pushed out toward the drip line where several neutrons can be emitted per β decay

Extreme processes:

 yield heavy isotopes that undergo fission and contribute n-rich fragments (β,βn,βγ)

Avg. number of neutrons emitted per $\boldsymbol{\beta}$ decay

Neutron Spectroscopy Methods

Many approaches... all with benefits and limitations

	³ He (not thermal)	Proton Recoil	Neutron TOF	³ He/ ⁶ Li/ ¹⁰ B (thermal)	Decay γ rays	Recoil Ion TOF Spectroscopy
E _n	✓ ~2-5% but complicated	✓ ~5% but complicated	✓ >5% but complicated	X	X	\checkmark
P _n	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Efficiency	X ∼0.1%	X ∼0.001%	✓ ~50% with loss of resolution	~ 50%	varies	\checkmark
Backgrounds	x	X	X	\checkmark	but need structure info	can be dealt with detector geometry

Recoil-Ion TOF Spectroscopy provides *some* of the best of all techniques

Recoil-Ion Time-of-Flight Spectroscopy

Confine ions in a RFQ trap (~1 mm³)

Detect β and recoil ion: determine nuclear recoil from TOF

 $\beta \bullet \bullet^{v}$

Neutron emission β (1 MeV): ~0.01 keV recoil n (1 MeV): ~10 keV recoil

- Identify neutron emission from faster TOF nuclear recoil!
- Determine E_n from (fast) recoil ion TOF spectrum
- β -delayed neutron emission probability (P_n) can be determined multiple ways

7

First β n measurement using trapped ions

Results of experiment measuring decay of ¹³⁷I (~30 ion/s) in the BPT

Recoil-Ion Time-of-flight spectrum

Neutron spectrum from ¹³⁷I βn decay

Moved BPT to CARIBU for β n Measurements

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at TLAS 2019 ¹⁰

BPT at CARIBU: Experimental Setup

(2) Δ E-E Plastic Beta Spectrometers:

- ΔE detector: 1 mm thick, 10.6 cm diameter (EJ-204)
- E detector: 10.2 cm thick, 13.3 cm diameter (EJ-204)
- ΔE scintillator has low intrinsic efficiency for $\gamma \& n$
- Isolated in separate vacuum separated by Al-Kapton window
- Electron detection threshold of ~70keV

(2) Microchannel plate (MCP) detectors :

- $50.3 \times 50.3 \text{ mm}^2$ Chevron MCPs w/ resistive anodes
- Packaged in grounded housing w/ 89% transmission grid
- sub-mm position resolution
- 1-ns timing resolution

(2) HPGe detectors:

- coaxial single-crystal (p-type)
- Relative-efficiency: 140% (Top) and 80% (Right)
- Calibration/Efficiencies measured with calibrated sources up to 3.3 MeV (⁵⁶Co source)

11

Recoil-ion Time of Flight Spectra

Measured seven β n precursors: ^{137,138,140}I, ^{135,136}Sb, and ^{144,145}Cs

CARIBU beams optimized with CPT and then delivered to BPT (pre-MRToF era)

¹³⁴Sb (P_n =0) was studied to help determine response of trap/detector system to well-understood β -decay:

- NDS: 97.6% 0⁻ to 0⁺ FF transition to the ground state of 134 Te (a $^{\sim}_{bv}$ 1)
- Determine intrinsic efficiency of MCP detectors for slow recoil ions (29-33%)

¹³⁴Sb (BPT): K. Siegl et al., Phys. Rev. C 97, 035504 (2018)

^{134,134m}Sb in X-Array at CARIBU: K. Siegl et al., Phys. Rev. C 98, 054307

BPT at CARIBU: Beta Energy Spectra

β-recoil coincidence detection is very selective and useful to obtain quality beta-decay data

Energy spectra can be measured using thick plastic scintillator detectors

Accumulated "slow ion" beta decay data were analyzed and compared to NDS levels/RIPL-3 decay data

Disagreement in the cases of ^{138,140}I and ^{144,145}Cs indicate a shift in decay strength to lower beta energies (higher E_v in daughter)

BPT at CARIBU: P_n Results

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 ¹⁴

BPT at CARIBU: P_n Results (continued)

B. S. Alan. et al, submitted to PRC

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 ¹⁵

BPT at CARIBU: E_n results

A. Czeszumska et al, submitted to PRC

Next Step: The BEtA Recoil-ion Trap (BEARtrap)

First dedicated instrument for recoil ion spectroscopy of βn precursors

Based on BPT design (fewer surprises)

- Compact trap geometry using rod electrodes
- Loading ion trap that will lead to smaller ion cloud size
- Larger area MCP detectors (80 x 100 mm²)
- Segmented plastic ΔE detectors: allow identification of beta-*neutron* coincidence events ("background")
- Design to accomodate HPGe clovers behind MCP detectors

β-recoil ion coincidence efficiency: ~4% Neutron energy threshold: ~50 keV Make measurements with beams down to 0.1 ions/s

Design, GEANT simulations, detector characterization performed by LSU personnel:

Gemma Wilson (Postdoc resident at ANL/PHY)

Alex Laminack (GS)

Graeme Morgan (GS)

BEARtrap Status

Construction is underway!

- Microchannel plate detectors have been purchased (Photonis) and in the process of being packaged by Quantar
- Plastic Beta Spectrometer modules system design work completed (LSU); Quote pending from vendor (Eljen)
- HPGe Clover detectors from ANL decay group
- Vacuum chamber obtained (ANL)
- Design of new loading trap and main RFQ trap nearing completion (Fall 2019)
- Preparations for beam line design in new low-energy hall of ATLAS (2020)
- Commissioning beam time using ⁹²Rb and ¹³⁷I awarded in March 2019 ATLAS PAC (G. Morgan, LSU)
- Initial Science program: ¹³⁴⁻¹³⁶Sn (12 days) and ^{98m,99–103}Y (6 days)

Opportunities at N=126 Factory

EXPECTED REACH OF N = 126 FACTORY

Slide courtesty of G. Savard (ANL)

Opportunities at The REP Factory? N=126: RARE EARTH PEAK

R. Orford et al., PRL 120, 262702 (2018) GRAZING calculations courtesy M. Brodeur

Slide courtesty of G. Savard (ANL)

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 ²⁰

Summary/Final Thoughts

βn properties are important to many applied fields including r-process nucleosynthesis

Successes with βn studies Beta-decay Paul Trap for at CARIBU has established recoil-ion time-of-flight spectroscopy as a new measurement technique

Many opportunities to measure βn precursors at CARIBU and N=126 factory

BEARtrap will be the first dedicated device for β n studies at ANL

These measurements are not simple and complementary measurements using different techniques ($\beta\gamma$, Total Absorption Spectroscopy, etc.) are needed

We need experimental and theoretical collaborators to get the most physics out of our measurements. More interaction/discussion is needed!

Acknowledgements

Lawrence Livermore National Laboratory

> N. Scielzo S. Padgett B. S. Alan K. Kolos

G. Savard J. A. Clark A. F. Levand A. Perez Galvan *M. Burkey* M. Sternberg (PhD, 2013) S. Caldwell (PhD, 2015)

S. Y. Strauss

E. B. Norman B. Wang R. M. Yee (PhD, 2013)

A. Czeszumska (PhD, 2016)

UNIVERSITY K. Sharma

S. T. Marley / Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 ²²

F. Buchinger *R. Orford*