Nuclear data needs for neutroncapture nucleosynthesis

Rebecca Surman University of Notre Dame

ATLAS/CARIBU Nuclear Astrophysics Workshop Argonne National Laboratory

12-13 July 2019

r-process elements in metal-poor stars

Atomic Number

the main *r*-process

solar system *r*-process residuals

potential main *r*-process astrophysical sites

the weak/limited r-process

solar system *r*-process residuals

potential weak/limited r-process astrophysical sites

All potential main r-process sites, incl. mergers:

Rest-Frame Days from Merger

Kilpatrick+2017 Kasen+2017

as well as additional sites, such as supernova neutrino-driven winds e.g., Woosley, Janka 2005, Arcones+2007

potential weak/limited *r*-process astrophysical sites

as well as additional sites, such as supernova neutrino-driven winds e.g., Woosley, Janka 2005, Arcones+2007

the *i* process

Notre Dame

potential *i* process astrophysical sites

rapidly accreting white dwarfs (RAWDs) e.g., Cote+18

convective He burning in AGB stars e.g., Herwig+11

neutron capture nucleosynthesis: required nuclear data

neutron capture rates from KADONIS

beta-decay rates neutron capture rates

beta-delayed neutron emission probabilities fission rates fission product distributions neutrino interaction rates (α,n) interaction rates

neutron capture rates for the *i* process

Denissenkov+2018

Reaction	Rb (up/down)	Sr (up/down)	\mid Y (up/down)	Zr (up/down)
$^{85}\mathrm{Br}(\mathrm{n},\gamma)$	-0.102/0.028	0.068/-0.029	0.07/-0.03	0.071/-0.03
$^{86}{ m Br}({ m n},\gamma)$	0.034/-0.006	0.068/-0.014	0.073/-0.015	0.077/-0.016
${}^{85}\mathrm{Kr}(\mathrm{n},\gamma)$	-0.005/0.007	0.016/-0.093	0.016/-0.092	0.016/-0.094
${}^{87}\mathrm{Kr}(\mathrm{n},\gamma)$	-0.225/0.231	0.104/-0.28	0.085/-0.21	0.07/-0.157
${}^{88}\mathrm{Kr}(\mathrm{n},\gamma)$	0.0/0.0	-0.305/0.185	0.151/-0.269	0.145/-0.239
$^{89}\mathrm{Kr}(\mathrm{n},\gamma)$	0.0/0.0	0.0/0.0	-0.276/0.066	0.045/-0.017
$^{89}{ m Rb}({ m n},\gamma)$	0.0/0.0	0.003/0.005	-0.226/0.241	0.038/-0.089
$^{89}{ m Sr}({ m n},\gamma)$	0.0/0.0	0.006/-0.007	-0.088/0.121	0.013/-0.027
$^{92}\mathrm{Sr}(\mathbf{n},\gamma)$	0.0/0.0	0.0/0.0	0.0/0.0	-0.089/0.117

neutron capture rates for the weak/limited r process

(α ,n) rates for a SNe weak/limited *r* process

Bliss+2018

neutron capture rates for the main r process

beta decay rates for the weak/limited r process

otre Dame

P_n values for the weak/limited r process

Notre Dame

beta decay rates for the main r process

beta decay rates for the main r process

neutron capture nucleosynthesis: required nuclear data

masses from AME2016

beta-delayed neutron emission probabilities neutron capture rates

> fission rates fission product distributions neutrino interaction rates spallation cross sections

impact of systematic mass uncertainties

Abundance pattern ranges for 10 distinct mass models

Côté, Fryer, Belczynski, Korobkin, Chruślińska, Vassh, Mumpower, Lippuner, Sprouse, Surman, Wollaeger 2018

deducing *r*-process conditions from abundance pattern details: the rare earth peak

Its formation mechanism is sensitive to both the astrophysical conditions of the late phase of the *r*-process and the nuclear physics of the nuclei populated at this time

Notre Dame ATLAS/CARIBU 12 July

deducing *r*-process conditions from abundance pattern details: the rare earth peak

Mumpower, McLaughlin, Surman, Steiner 2016

deducing *r*-process conditions from abundance pattern details: the rare earth peak

Mumpower, McLaughlin, Surman, Steiner 2016

updated reverse engineering calculations

updated reverse engineering calculations + new CPT measurements

masses from CPT at CARIBU

hot, (n,γ) - (γ,n) equilibrium example

updated reverse engineering calculations + new CPT measurements

Orford+ in preparation

rare earth masses: experimental prospects

Aprahamian+18 arxiv:1809.00703

Vassh, Vogt, Surman, Randrup, Sprouse, Mumpower, Jaffke, Shaw, Holmbeck, Zhu, McLaughlin, J Phys G 2019

summary

Detangling the origins of the heaviest elements via various neutron capture processes continues to be a key priority for nuclear astrophysics.

On the nuclear side, Argonne experiments are reaching the increasingly neutron-rich nuclei whose properties shape neutron capture nucleosynthesis and may provide key insight into the astrophysical sites of production.

We look forward to advances at CARIBU and the upcoming *N*=126 factory that will facilitate measurements of important masses, beta-decay properties, and indirect determinations of neutron capture rates.