ORNL Instrumentation Development for Astrophysics Measurements

Matthew Hall
ATLAS Workshop
7/13/19
• 3He beam experiments with GODDESS
 • Previous experiments
 • 19F(3He,t)19Ne
 • 40Ca(3He,α)39Ca
 • (α,p) reactions with gas jets
 • Previous measurements with JENSA
 • SOLSTISE for HELIOS and SOLARIS
Recipe for Reaction Rate Calculations

• Resonance Strengths
 • Typically need one of Γ_p, Γ_α, Γ_γ
 • Need J^π of excited states in compound nucleus

• Excitation energies
 • Reducing uncertainty important - affects reaction rate exponentially:

$$N_A(\sigma v)_r = \frac{1.5399 \times 10^{11}}{T^3} \left(\frac{M_0 + M_1}{M_0 M_1} \right)^{3/2} \times \sum_i (\omega \gamma)_i \exp \left(-\frac{11.605 E_i}{T} \right)$$

• Interference?
Recipe for Reaction Rate Calculations

• Resonance Strengths
 • Typically need one of Γ_p, Γ_α, Γ_γ
 • Need J^π of excited states in compound nucleus

• Excitation energies
 • Reducing uncertainty important - affects reaction rate exponentially:

$$N_A \langle \sigma v \rangle_r = \frac{1.5399 \times 10^{11}}{T^3/2} \left(\frac{M_0 + M_1}{M_0 M_1} \right)^{3/2}$$

$$\times \sum_i (\omega \gamma)_i \exp \left(\frac{-11.605E_i}{T} \right)$$

• Interference?
GODDESS Summary

• ORRUBA + Gretina/Gammasphere

• Previous Experiments:
 (Gammasphere)
 • $^{95}\text{Mo}(d,p)^{96}\text{Mo}$
 • $^{134}\text{Xe}(d,p)^{135}\text{Xe}$
 • $^{19}\text{F}(3\text{He},t)/$
 $^{40}\text{Ca}(3\text{He},\alpha)$
 (Gretina)
 • $^{56}\text{Fe}(p,p')$
 • $^{30}\text{P}(d,p)^{31}\text{P}$
 • $^{134}\text{Te}(d,p)^{135}\text{Te}$
^3He Beams with GODDESS

\(^{19}\text{F}(^{3}\text{He},t)^{19}\text{Ne} \) for \(^{18}\text{F}(p,\alpha)^{15}\text{O} \)

- \(^{18}\text{F}(p,\alpha)^{15}\text{O} \) important for nova nucleosynthesis.
- Interference between \(3/2^+ \) states near \(S_p \) and resonance at \(E_x \sim 7 \text{ MeV} \)
- Found gamma rays for two potential \(3/2^+ \) states in \(^{19}\text{Ne} \) – resonances in \(^{18}\text{F}(p,\alpha)^{15}\text{O} \)

\[
\begin{align*}
&6927, 7/2^- \\
&6891, 3/2^- \\
&6383, 5/2^- \\
&6787, 3/2^- \\
&6592, 9/2^- \\
&6554, 7/2^- \\
&6527, 3/2^- \\
&6500, 11/2^- \\
&6497, 3/2^- \\
&6429, 1/2^- \\
&6330, 7/2^- \\
&6282, 5/2^- \\
&6255, 1/2^- \\
&6110, 9/2^- \\
&6088, 3/2^- \\
&6070, 7/2^- \\
&5107, 5/2^- \\
&4682, 5/2^- \\
&4648, 13/2^- \\
&4556, 3/2^- \\
&4549, 5/2^- \\
&4377, 7/2^- \\
&4032, 9/2^- \\
&3998, 7/2^- \\
&3908, 3/2^- \\
&2779, 9/2^- \\
&1554, 3/2^- \\
&1458, 3/2^- \\
&1345, 5/2^- \\
&197, 5/2^- \\
&109, 1/2^- \\
&0, 1/2^-
\end{align*}
\]
$^{19}\text{F}(^{3}\text{He},t)^{19}\text{Ne}$ for $^{18}\text{F}(p,\alpha)^{15}\text{O}$

- $^{18}\text{F}(p,\alpha)^{15}\text{O}$ important for nova nucleosynthesis.
- Interference between $3/2^+$ states near S_p and resonance at $E_x \sim 7$ MeV
- Found gamma rays for two potential $3/2^+$ states in ^{19}Ne – resonances in $^{18}\text{F}(p,\alpha)^{15}\text{O}$

• 38K(p,γ)39Ca important at endpoint of nova nucleosynthesis – disagreement between theory and observation.
• Previously studied directly with DRAGON and via 40Ca(3He,α) at TUNL.
• 23 new 39Ca transitions found including three potential resonances for 38K(p,γ)
(α,p) reactions with SOLSTISE
(SOLenoid and Supersonic Target In Structure Experiments)
(α,p) Reactions and Nucleosynthesis

• (α,p) reactions important reactions for αp-process and astrophysical sites like XRBs, Type Ia SN, etc.
• Not easy to measure, especially on radioactive nuclei where He target needed.
• Gas target (jet/cell) necessary for many of these:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Reaction</th>
<th>Type</th>
<th>Sensitivity</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$^{56}\text{Ni}(\alpha,p)^{59}\text{Cu}$</td>
<td>U</td>
<td>12.5</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>$^{59}\text{Cu}(p,\gamma)^{60}\text{Zn}$</td>
<td>D</td>
<td>12.1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>$^{15}\text{O}(\alpha,\gamma)^{19}\text{Ne}$</td>
<td>D</td>
<td>7.9</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>$^{30}\text{S}(\alpha,p)^{33}\text{Cl}$</td>
<td>U</td>
<td>7.8</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>$^{26}\text{Si}(\alpha,p)^{29}\text{P}$</td>
<td>U</td>
<td>5.3</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>$^{61}\text{Ga}(p,\gamma)^{62}\text{Ge}$</td>
<td>D</td>
<td>5.0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>$^{23}\text{Al}(p,\gamma)^{24}\text{Si}$</td>
<td>U</td>
<td>4.8</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>$^{27}\text{P}(p,\gamma)^{28}\text{Si}$</td>
<td>D</td>
<td>4.4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>$^{63}\text{Ga}(p,\gamma)^{64}\text{Ge}$</td>
<td>D</td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>$^{60}\text{Zn}(\alpha,p)^{63}\text{Ga}$</td>
<td>U</td>
<td>3.6</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>$^{22}\text{Mg}(\alpha,p)^{25}\text{Al}$</td>
<td>D</td>
<td>3.5</td>
<td>1</td>
</tr>
<tr>
<td>12</td>
<td>$^{56}\text{Ni}(p,\gamma)^{57}\text{Cu}$</td>
<td>D</td>
<td>3.4</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>$^{28}\text{S}(\alpha,p)^{31}\text{Cl}$</td>
<td>U</td>
<td>2.8</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>$^{27}\text{Si}(\alpha,p)^{30}\text{Cl}$</td>
<td>U</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>$^{31}\text{Cl}(p,\gamma)^{34}\text{Ar}$</td>
<td>U</td>
<td>2.7</td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>$^{34}\text{K}(p,\gamma)^{36}\text{Ca}$</td>
<td>U</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>17</td>
<td>$^{18}\text{Ne}(\alpha,p)^{21}\text{Na}$</td>
<td>D</td>
<td>2.3</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>$^{25}\text{Si}(\alpha,p)^{28}\text{P}$</td>
<td>U</td>
<td>1.9</td>
<td>2</td>
</tr>
<tr>
<td>19</td>
<td>$^{57}\text{Cu}(p,\gamma)^{59}\text{Zn}$</td>
<td>D</td>
<td>1.7</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>$^{34}\text{Ar}(\alpha,p)^{37}\text{K}$</td>
<td>U</td>
<td>1.6</td>
<td>3</td>
</tr>
<tr>
<td>21</td>
<td>$^{24}\text{Si}(\alpha,p)^{27}\text{P}$</td>
<td>U</td>
<td>1.4</td>
<td>3</td>
</tr>
<tr>
<td>22</td>
<td>$^{22}\text{Mg}(p,\gamma)^{23}\text{Al}$</td>
<td>D</td>
<td>1.1</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>$^{65}\text{As}(p,\gamma)^{68}\text{Se}$</td>
<td>U</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>24</td>
<td>$^{14}\text{O}(\alpha,p)^{17}\text{F}$</td>
<td>U</td>
<td>1.0</td>
<td>3</td>
</tr>
<tr>
<td>25</td>
<td>$^{40}\text{Sc}(p,\gamma)^{41}\text{Ti}$</td>
<td>D</td>
<td>0.9</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>$^{34}\text{Ar}(p,\gamma)^{35}\text{K}$</td>
<td>D</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>27</td>
<td>$^{47}\text{Mn}(p,\gamma)^{48}\text{Fe}$</td>
<td>D</td>
<td>0.8</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>$^{39}\text{Ca}(p,\gamma)^{40}\text{Sc}$</td>
<td>D</td>
<td>0.8</td>
<td>3</td>
</tr>
</tbody>
</table>

a Up (U) or down (D) variation that has the largest impact
b $M_{LC}^{(t)}$ in units of 10^{17} ergs/g/s
(α,p) Reactions with JENSA

- $^{14}\text{N}(\alpha,p)$ – first inverse kinematics experiment with gas jet.
- Large level spacing in ^{18}F, nice test case:
 \[E_{19}, E^{(14}\text{N}) = 1296 \text{ keV/u} \]

- $^{56}\text{Ni}(\alpha,p)$ – performed for time inverse
- $^{59}\text{Cu}(p,\alpha)$ – important in XRBs.

- Density of states also not an issue here because p_0 dominates.
Many of these experiments could be improved in a solenoid especially if the level density is higher.

SOLSTISE (gas jet + HELIOS/SOLARIS)

Jet currently being tested at ORNL/simulations in progress (more at LECM).
Advantages of \((\alpha, p)\) with SOLSTISE

- Potentially less elastic scattering – less DAQ dead time and higher beam rates for more statistics.

- Kinematic compression in inverse kinematics not an issue: in \(A=30-40\) region solenoid may especially be useful due to high density of states.

Design considerations:

- Investigating different nozzle designs
 - Gas jet “sheet” or smaller (~1 mm) jet to improve position resolution?
 - For high level densities that can’t be resolved in silicon, thicker jet may be more useful for increased statistics.

- Gas jet “sheet” would also be useful for RAISOR beams/beams with larger spot size.
• GODDESS has had successful measurements using stable 3He beams
 • 19F(3He,t) & 40Ca(3He,α)

• Some astrophysics measurements may require new target technologies (SOLSTISE)
 • SOLSTISE will be particularly useful for (α,p)
 • JENSA has already had some success
 • Solenoid may solve some issues present in regular inverse kinematics experiments (kinematic compression, etc)…
Acknowledgements

J. Allen
D. Bardayan
O. Hall
J. Hu
P. O’Malley
W.P. Tan

J. Blackmon
C. Rasco

S. Ota

T. Ahn

T. Baugher
J. Cizewski
A. Lepailleur
A. Ratkiewicz
H. Sims
D. Walter

S. Burcher
K. Jones
K. Smith
P. Thompson
C. Thornsberry

K. Chipps
M. Febbraro
S. Pain
R.L. Varner

M. Carpenter
C.L. Jiang
D Seweryniak
S. Zhu
D. Santiago-Gonzalez
J.T. Anderson
A.D. Ayangeakaa

G.L. Wilson

S.M. Cha
K.Y. Chae
E. J. Lee