

SOLENOID AND SUPERSONIC TARGET IN STRUCTURE EXPERIMENTS

ORNL Instrumentation Development for Astrophysics Measurements

Matthew Hall ATLAS Workshop 7/13/19

- ³He beam experiments with GODDESS
 - Previous experiments
 - ${}^{19}F({}^{3}He,t){}^{19}Ne$
 - ${}^{40}Ca({}^{3}He,\alpha){}^{39}Ca$
- (α, p) reactions with gas jets
 - Previous measurements with JENSA
 - SOLSTISE for HELIOS and SOLARIS

Recipe for Reaction Rate Calculations

Red Giant Stars

s-process

- Resonance Strengths
 - Typically need one of Γ_p , Γ_{α} , Γ_{γ}
 - Need J^{π} of excited states in compound nucleus
- Excitation energies
 - Reducing uncertainty important affects reaction rate exponentially:

Recipe for Reaction Rate Calculations

CAK RIDGE National Laboratory

- Resonance Strengths
 - Typically need one of Γ_p , Γ_{α} , Γ_{γ}
 - Need J^{π} of excited states in compound nucleus

GODDESS Summary

OAK RIDGE

- ORRUBA + Gretina/Gammasphere
- Previous Experiments: (Gammasphere)
 - ${}^{95}Mo(d,p){}^{96}Mo$
 - 134 Xe(d, *p*) 135 Xe
 - ¹⁹F(³He,t) /
 ⁴⁰Ca(³He,α)

(Gretina)

- ${}^{56}\text{Fe}(p,p')$
- ${}^{30}\mathrm{P}(d,p){}^{31}\mathrm{P}$
- $^{134}\text{Te}(d,p)^{135}\text{Te}$

³He Beams with GODDESS

Adapted from A. Ratkiewicz et al. AIP Conf. Proc. 1525, 487 (2013).

$^{19}F(^{3}He,t)^{19}Ne \text{ for } ^{18}F(p,\alpha)^{15}O$

• ${}^{18}F(p,\alpha){}^{15}O$ important for nova nucleosynthesis.

OAK RIDGE National Laboratory

• Interference between $3/2^+$ states near S_p and

resonance at $E_x \sim 7 \text{ MeV}$

• Found gamma rays for two potential 3/2⁺ states

in ¹⁹Ne – resonances in ¹⁸F (p,α) ¹⁵O

M. R. Hall et al. Phys. Rev. Lett. 122, 052701

$^{19}F(^{3}He,t)^{19}Ne \text{ for } ^{18}F(p,\alpha)^{15}O$

• ${}^{18}F(p,\alpha){}^{15}O$ important for nova nucleosynthesis.

OAK RIDGE National Laboratory

• Interference between $3/2^+$ states near S_p and

resonance at $E_x \sim 7 \text{ MeV}$

• Found gamma rays for two potential 3/2⁺ states

in ¹⁹Ne – resonances in ¹⁸F (p,α) ¹⁵O

M. R. Hall et al. Phys. Rev. Lett. 122, 052701

${}^{40}Ca({}^{3}He,\alpha){}^{39}Ca$ with GODDESS

0.8L 0.15

0.2

0.25

0.3

Temperature (GK)

0.35

0.4

0.45

0.5

OAK RIDGE National Laboratory

 23 new ³⁹Ca transitions found including three potential resonances for ³⁸K(p,γ)

(α,p) reactions with SOLSTISE(SOLenoid and Supersonic Target In Structure Experiments)

(α, p) Reactions and Nucleosynthesis

TABLE 1 Reactions that impact the burst light curve in the single-zone X-ray burst model.

1 56 NE() ⁵⁹ Cu U	19.5	
1 ··· Ν1(α,p		12.0	1
2 ⁵⁹ Cu(p,) ⁶⁰ Zn D	12.1	1
3 ${}^{15}O(\alpha, \gamma$) ¹⁹ Ne D	7.9	1
4 ${}^{30}S(\alpha, p$) ³³ Cl U	7.8	1
5 ${}^{26}Si(\alpha,]$	5) ²⁹ P U	5.3	1
$6 = {}^{61}\text{Ga}(p, \gamma)$	^{62}Ge D	5.0	1
$7 = {}^{23}Al(p, \gamma)$	γ) ²⁴ Si U	4.8	1
8 $^{27}P(p, \gamma)$	$)^{28}S$ D	4.4	1
9 63 Ga(p, -	$)^{64}$ Ge D	3.8	1
10 60 Zn(α ,p) ⁶³ Ga U	3.6	1
11 $^{22}Mg(\alpha,$	p) ²⁵ Al D	3.5	1
12 ${}^{56}Ni(p,\gamma)$) ⁵⁷ Cu D	3.4	1
13 $^{29}S(\alpha, p$) ³² Cl U	2.8	1
14 $^{28}S(\alpha, p$) ³¹ Cl U	2.7	1
15 ${}^{31}Cl(p,\gamma)$) ³² Ar U	2.7	1
$16 = {}^{35}K(p, \gamma)$) ³⁶ Ca U	2.5	2
17 ${}^{18}Ne(\alpha, \mu)$) ²¹ Na D	2.3	2
18 $^{25}Si(\alpha, j)$	b) ²⁸ P U	1.9	2
19 ⁵⁷ Cu(p, -) ⁵⁸ Zn D	1.7	2
20 ${}^{34}Ar(\alpha,$	p) ³⁷ K U	1.6	3
21 ${}^{24}Si(\alpha, j)$	o) ²⁷ P U	1.4	3
$22 - {}^{22}Mg(p, 22)$	γ) ²³ Al D	1.1	3
23 ⁶⁵ As(p, ~) ⁶⁶ Se U	1.0	3
24 ${}^{14}O(\alpha, \mathbf{j})$	$^{0})^{17}F$ U	1.0	3
25 $^{40}Sc(p,\gamma)$) ⁴¹ Ti D	0.9	3
26 ³⁴ Ar(p,	$(\gamma)^{35}$ K D	0.8	3
27 ⁴⁷ Mn(p,	γ) ⁴⁸ Fe D	0.8	3
28 ³⁹ Ca(p,	γ) ⁴⁰ Sc D	0.8	3

^a Up (U) or down (D) variation that has the largest impact ^b $M_{LC}^{(i)}$ in units of 10¹⁷ ergs/g/s (α,p) reactions important reactions for *ap*-process and astrophysical sites like XRBs, Type Ia SN, etc.

OAK RIDGE National Laboratory

11

- Not easy to measure, especially on radioactive nuclei where He target needed.
- Gas target (jet/cell) necessary for many of these:

(α, p) Reactions with JENSA

OAK RIDGE National Laboratory

- ${}^{14}N(\alpha,p)$ first inverse kinematics experiment with gas jet.
- Large level spacing in ¹⁸F, nice test case:

- ⁵⁶Ni(α ,p) performed for time inverse ⁵⁹Cu(p, α) – important in XRBs.
- Density of states also not an issue here because p₀ dominates.

(α, p) Reactions with a Solenoid/Gas Jet

- Many of these experiments could be improved in a solenoid especially if the level density is higher.
- SOLSTISE (gas jet + HELIOS/SOLARIS)
- Jet currently being tested at ORNL/simulations in progress (more at LECM).

•

ANTERIDGE

National Laboratory

Advantages of (α, p) with SOLSTISE

- Potentially less elastic scattering less DAQ dead time and higher beam rates for more statistics.
- Kinematic compression in inverse kinematics not an issue: in A=30-40 region solenoid may especially be useful due to high density of states.

Design considerations:

- Investigating different nozzle designs
 - Gas jet "sheet" or smaller (~1 mm) jet to improve position resolution?
 - For high level densities that can't be resolved in silicon, thicker jet may be more useful for increased statistics.
 - Gas jet "sheet" would also be useful for RAISOR beams/beams with larger spot size.

ational Laboratory

Summary and Outlook

- GODDESS has had successful measurements using stable ³He beams
 - ${}^{19}F({}^{3}He,t) \& {}^{40}Ca({}^{3}He,\alpha)$
- Some astrophysics measurements may require new target technologies (SOLSTISE)
 - SOLSTISE will be particularly useful for (α, p)
 - JENSA has already had some success
 - Solenoid may solve some issues present in regular inverse kinematics experiments (kinematic compression, etc)...

Acknowledgements

NOTRE DAME J. Allen D. Bardayan O. Hall J. Hu P. O'Malley W.P. Tan

UNIVERSITY OF

J. Blackmon C. Rasco

Lawrence Livermore National Laboratory

S. Ota

T. Baugher J. Cizewski A. Lepailleur A. Ratkiewicz H. Sims D. Walter S. Burcher K. Jones K. Smith P. Thompson C. Thornsberry AK

K. Chipps M. Febbraro **S. Pain** R.L. Varner Argonne NATIONAL LABORATORY M. Carpenter C.L. Jiang D Seweryniak S. Zhu D. Santiago-Gonzalez J.T. Anderson A.D. Ayangeakaa

G.L. Wilson

