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Astrophysical Motivation
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Indirect Measurements : Gamma-ray Spectroscopy (1)

Modern y-ray spectroscopy techniques provide the means to obtain

precise resonance energies and spin-parity assignments.
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Indirect Measurements : Gamma-ray Spectroscopy (2)

Here, we focus solely on resonant proton radiative capture reactions and low-
energy resonances [1.e. (p,y) and E, < 500 keV].
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Measurements of Key Astrophysical Nuclei with
Gammasphere

Programme of studying sd-shell nuclei with Gammasphere, e.g.

Destruction of the cosmic gamma-ray emitter 26Al
- Low-lying resonances dominate the rate in Wolf-Rayet and
AGB stars
- High-spin states in ?/Si key due to 5* ground state of %Al
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Measurements of Key Astrophysical Nuclei with
Gammasphere

Programme of studying sd-shell nuclei with Gammasphere, e.g.
Level Structure of 26Si

- The 22Al(p,y)?°Si reaction is a crucial link that bypasses the
production of the 2°Al ground state.

- Important low-spin states populated with light-ion induced
reactions.
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Measurements of Key Astrophysical Nuclei with
Gammasphere

Programme of studying sd-shell nuclei with Gammasphere, e.g.

Level structure of 31S and key resonances for ONe novae

- Gateway reaction for the production of heavy elements in
ONe nova explosions

- New states identified when employinga light-ion projectile
- Suggested the dominance of
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Measurements of Key Astrophysical Nuclei with
Gammasphere

As well as a host of other studies

- The %3Na-2Mg mirror pair and astrophysical implications
(Jenkins PRC 2013)

- 30S of interest for both Classical Novae and X-ray bursts (Lotay
PRC 2012)

- Neutron unbound states in ?°Mg relevant to the %?Ne(a,n)
reaction for the s-process (Lotay, Doherty, Seweryniak EPJA Lett
Accepted)

- Plus data under analysis for key isotopes 2°Al, 30P, 607n ...




Measurements of Key Astrophysical Nuclei with
Gammasphere

As well as a host of other studies

- The 23Na-23Mg mirror pair and astrophysical implications
(Jenkins PRC 2013)

- 30S of interest for both Classical Novae and X-ray bursts (Lotay
PRC 2012)

- Neutron unbound states in 2°Mg relevant to the %?Ne(a;,n)
reaction for the s-process (Lotay, Doherty, Seweryniak EPJA Lett
Accepted)

- Plus data under analysis for key isotopes 2°Al, 30P, 607Zn ...

However, in many cases additional
channel selectivity is required




Argonne Fragment Mass Analyzer (FMA)

Mass resolution:

dM/M ~1/350
Angularacceptance:

8 msr (max)

Energy acceptance:
DE/E=+/-20%

M/Q acceptance:
D(M/Q)/(M/Q) = 10%

Flight path 8.2m
Max(Br)=1.1 Tm

Max(Er)=20 MV

Can be rotated off O degrees
Can be moved along the axis
Different focusing modes
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GAMMASPHERE + FMA

Important component of the
experimental program at ATLAS since its

commissioningin 1992 (~200 papers)

* Protondrip-line
— Proton emitters
— new o emitters
— In-beamy rays
101Sn
‘ Transfermium nuclei: No, Lr, Rf
- Transfer on >6Ni and 44Ti

Fusion-evaporation, deep-inelastic,
transfer reactions




Nuclear Astrophysics with GAMMASPHERE + FMA
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Spectrum obtained
in coincidence with
26Gj residues
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Limited FMA efficiency
modest solid angle — 2-
8 msr
small M/Q acceptance
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Nuclear Astrophy5|cs with GRETINA + FMA

New FMA entrance
quadrupole doublet

Solid angle ~10-12 msr for
FMA/Gretina compared to ~2
msr with FMA/GS

=> Key for weak channels




Astronomical Observations - Presolar Grains

Discovery of presolar grains has provided a
versatile tool to study nucleosynthesis.
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Novae Nucleosynthesis

338 34S

C. lliadis et al., Astrophys. J.
Suppl. Ser. 142, 105 (2002).

VARIED 175 REACTIONS
THROUGH THEIR
ASSOCIATED UNCERTAINTIES

Proton captures on stable sulfur
1sotopes well-studied [A. Parikh
et al., PLB 737, 314 (2014) & S.
Gillespie et al., PRC 96, 025801
(2017)]

However, proton capture rates on
unstable chlorine 1sotopes are
almost entirely unknown — HF
(10% uncertainty)

Uncertainties in the 33Cl(p,y)’*Ar
reaction were found to result in
33S and 34S abundance variations
of ~18 and ~3, respectively




Previous Studies of 34Ar

GAMOW
WINDOW

S, = 4663.9(4) keV

Level structure of 3*Ar is relatively
sparse — HF clearly inappropriate

Many unknowns 1in relation to the
nuclear properties of excited states

Possible missing levels




Gamma-ray Spectroscopy Study of 34Ar @ ANL

* Used 95 MeV beam of **Mg ions produced by the Argonne
ATLAS accelerator to bombard a ~200 pg/cm? thick target of 1°C
target to populate excited states in >*Ar via 2C(**Mg,2n)

GRETINA y-ray tracking array

used to detect prompt y rays at the
target position
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Gamma-ray Spectroscopy Study of 34Ar @ ANL

34Ar : y-ray singles spectrum
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Gamma-ray Spectroscopy Study of 34Ar @ ANL
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Partial Level Scheme of 34Ar




Mirror Nucleus Comparisons

5323 2-
5228 0*




Mirror Nucleus Comparisons

* We can also obtain the resonance strengths from the mirror
nucleus 34S
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33Cl(p,Y)3*Ar Stellar Reaction Rate
- A number of resonances

4631 identified. Analysis has
4854 190 3 ~6x 1078 reduced uncertainties in the
4886 222 2+ ~2x 107 astrophysical 33Cl(p,y)**Ar
4964 300 0+ ~3x 106 reaction rate by ~3 orders

4968 304 - 6% 103 of magnitude

0

Preliminary analysis indicates that
rate 1s significantly lower than
expected and points to 2 specific
presolar grains as being likely
nova candidates
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Future Perspectives and More Exotic Cases

GRETINA coupled to the FMA represents an extremely powerful
tool for studying exotic astrophysical nuclei close to the proton
drip line.

For extra selectivity
- RDT studies with betas (extremely difficult)
- New focal plane detectors (Bragg detector, MRToF)

Other separators..




Gas-Filled separator - Principle of Operation

vacuum

©

Bp = P/Qave
Qave ~ (V/Vo) 713
Bp~ 0.0227 A/Z1/3[Tm]
Charge-state focusing




AGFA Features — 15t gas-filled separator optimised for
spectroscopy
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Large solid angle

Large target-separatordistance - prompty-ray spectroscopy with a 4w Ge
array

Compactfocal plane — efficient decay spectroscopy

Short flight path — short-lived activities




AGFA and Gammasphere
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