Nuclear Astrophysics Opportunities with the Modular Total Absorption Spectrometer (MTAS)

B.C. Rasco

Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019 July XX, 2019

Nuclear Astrophysics?

What qualifies as nuclear astrophysics?

What can the Modular Total Absorption Spectrometer (MTAS) measure?

Dark Matter

r Process - Explosion r Process - Freeze Out

What MTAS Measures

For neutron rich nuclei, β s, γ s, and neutrons will be present in almost every decay. MTAS can measure them all. By measuring all as a function of energy, we can measure the β -strength function in one experiment.

$\mathsf{MTAS}\; \gamma s$

Detects single γ s with a ~98% efficiency Detects **level** feeding, which is directly relatable to Gamow-Teller strength

> MTAS βs Detects βs with E > 2 MeV

MTAS Neutrons

Detects neutrons with ~15% efficiency Measures neutron energy ~250 keV FWHM Detects very low energy neutrons Detects neutron fine structure (γs following β-delayed neutron decay) feeding intensities

Measuring all three with one detector in one experiment is efficient. MTAS is a unique and powerful device.

Measuring $\beta s: {}^{92}Rb$

 Q_{β} = 8095 (6) keV T_{1/2}= 4.48(3) s

B.C. Rasco, et al., PRL 117, 092501 (2016)

ENSDF Ground State Feeding: 95.2±.7% (up from 50±18% in 2007) and 87.5±2.5%* *A.-A. Zakari-Issoufou *et al*, PRL **115**, 102503

MTAS Ground State Feeding: 91±3%

Our uncertainty mainly from ground state $\boldsymbol{\beta}$ simulation.

Ground state feeding insensitive to exact decay pattern from higher states

Measuring All Three at Once βs , γs , and Neutrons: ¹³⁷I

Extracting all three components, β , γ , and neutrons from one decay This decay is important for r process decay to stability

Current and Previous Measurements

MTAS as an Active Veto

What are these measurements about? 2017-2018: High precision source decay measurements of ⁸⁸Y, ⁵⁴Mn, ⁶⁵Zn, ⁴⁰K

MTAS Active Veto

Why ⁴⁰K Measurements?

Background for signal (3-6 keV bump) at DAMA, SABRE, COSINE-100,... and other high precision beyond the standard model physics measurements Improve precision of K-Ar Dating

Why ⁴⁰K Measurements?

Background signal (3-6 keV bump) for DAMA, SABRE, COSINE-100,... and other high precision beyond the standard model physics measurements Improve precision of K-Ar Dating

Why ⁴⁰K Measurements?

Background signal (3-6 keV bump) for DAMA, SABRE, COSINE-100,... and other high precision beyond the standard model physics measurements Improve precision of K-Ar Dating

⁴⁰K Decay to the Ground State

The different calculated branching ratios, $I_{(\beta^{+}+\epsilon)}$, of ⁴⁰K (EC)

LNE-LNHB/CEA : Table of Radionuclides Vol 5, ISBN 978-92-822-2234-8 (2010) $BR_{EC} = 0.2(1)\%$

> NNDC : Nuclear Data Sheets 140, 1 (2017) BR_{EC} =0.046(6)%

Indirect Experimental Half-Life Value BR_{EC} =0.8(8) %

KDK Collaborator Value (J. Kostensalo and J. Suhonen, Jyväskylä) $BR_{EC} = 0.064(19)\%$

Calculated one σ limits vary from 0.04% < BR_{EC} < 0.3% (~0-3% of electron capture measurement)

⁴⁰K Decay Experiment (KDK)

SDD X-Ray Detector

Silicon Drift Detector (SDD)

SDD Made at MPG, Munich ~15th iteration of design They put SDDs on the Mars Rovers

Making Enriched ⁴⁰K Source Graphite disk (for testing) $(\phi 12.7 \text{ mm}, 1 \text{ mm thick})$ Al plates Ta crucible KCI material W heating wire (3 mg) 27607-01 10.0kV 47.3mm x8 SE 5.00m

Enriched (16%) 3mg ⁴⁰KCl source evaporated onto Carbon foil backing at ORNL (~3 bananas equivalent)

Needs to be thin so 2.9 keV X rays can escape from source

~50 nCi ⁵⁴Mn source 200 cps triggered in SDD

Gating on each ⁵⁴Mn X rays gives consistant MTAS single 834 keV γ ray tagging efficiency to 4 significant digits!

Finalizing dead-time corrections before giving out efficiency

⁵⁴Mn with SDD Trigger in MTAS

33 days of data with about 1 triggered counts per minute

The KDK Collaboration

N.T. Brewer^[1], P. Di Stefano^[2], A. Fijalkowska^{[1][5][6]}, Z. Gai^[1], C. Goetz^[3], R.Grzywacz^[3], J. Kostensalo^[7], P. Lechner^[8], Y. Liu^[1], E. Lukosi^[3], M. Mancuso^[9], D. McKinnon^[3], C. Melcher^[3], J. Ninkovic^[8], F. Petricca^[9], B.C. Rasco^[1], K.P. Rykaczewski^[1], P. Squillari^[2], D.W. Stracener^[1], M. Stukel^[2], J. Suhonen^[7], M. Wolińska-Cichocka^{[1][4][6]}, Itay Yavin

[1] Oak Ridge National Laboratory (ORNL), Tennessee, USA

[2] Queen's University, Kingston, Ontario, CA

[3] University of Tennessee at Knoxville, Knoxville, Tennessee

[4] Heavy Ion Laboratory University of Warsaw, Warsaw, Poland

[5] University of Warsaw, Warsaw, Poland

[6] Joint Institute for Nuclear Physics and Applications (JINPA)

[7] University of Jyväskylä, Jyväskylä, Finland

[8] MPG Semiconductor Laboratory, Munich, Germany

[9] Max Planck Institute for Physics, Munich, Germany

Technical and Electronic Support from M. Constable, F. Retiere (TRIUMF), K. Dering (Queen's University), Paul Davis, University of Alberta

arXiv: 1711.04004

Thank You for your Attention