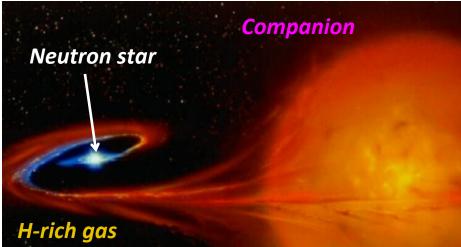
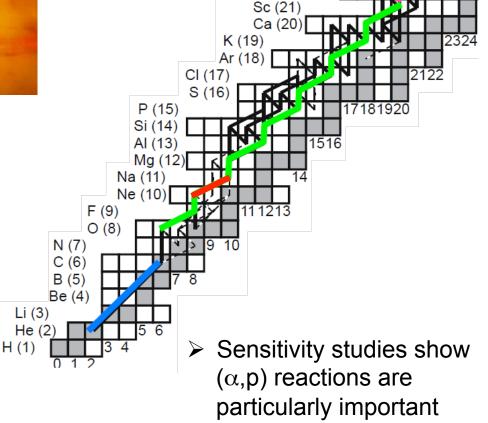

ANASEN at ATLAS: Current Status and Future Possibilities



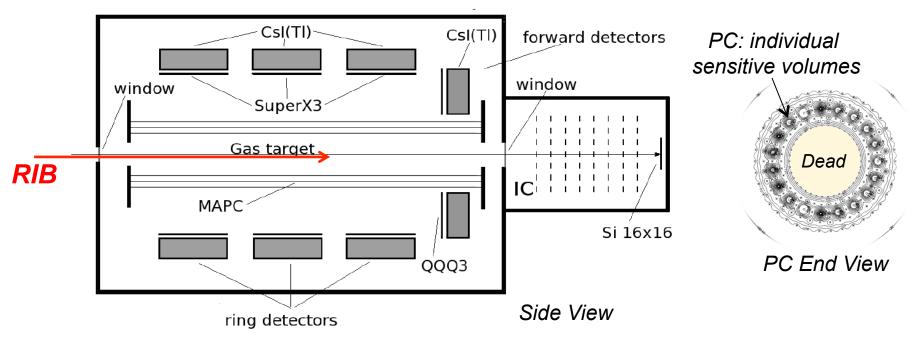
Catherine Deibel Jeffery Blackmon Louisiana State University


Type I X-ray Bursts

Cyburt et al., APJ (2016)

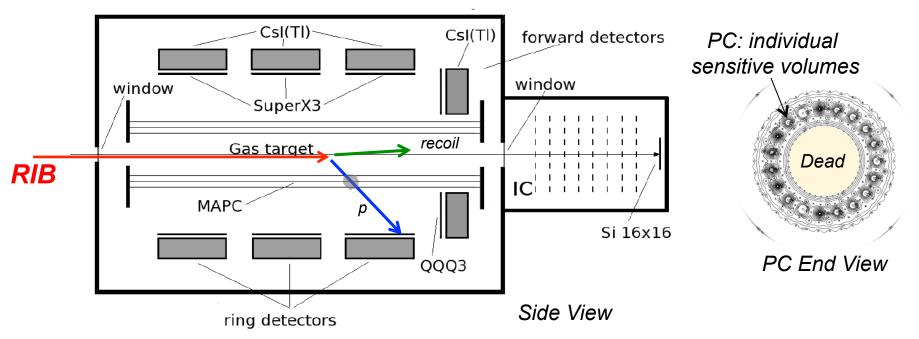
Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	¹⁵ O(α , γ) ¹⁹ Ne	D	16	1
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	1
3	⁵⁹ Cu(p, γ) ⁶⁰ Zn	D	5.1	1
4	${}^{61}\text{Ga}(\mathbf{p}, \gamma){}^{62}\text{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	$^{14}O(\alpha, p)^{17}F$	D	5.8	1
7	23 Al(p, γ) 24 Si	D	4.6	1
8	¹⁸ Ne(α , p) ²¹ Na	U	1.8	1
9	⁶³ Ga(p, γ) ⁶⁴ Ge	D	1.4	2
10	${}^{19}F(p, \alpha){}^{16}O$	U	1.3	2
11	${}^{12}C(\alpha, \gamma){}^{16}O$	U	2.1	2
12	${}^{26}Si(\alpha, p){}^{29}P$	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
	57	-		

- Most common stellar explosions
 - X-ray binary with periodic bursts
 - 10-100 s bursts recurring ~days
- Thermonuclear explosions



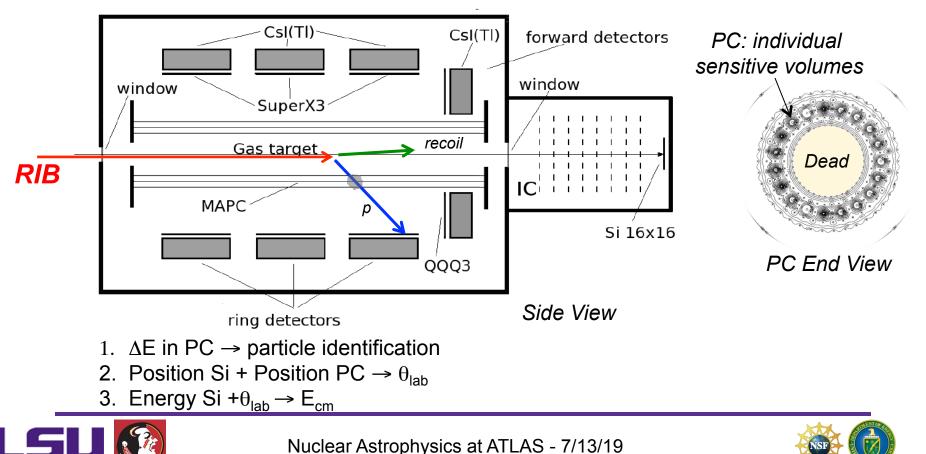
Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO₂ gas for (α ,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7μm diam carbon fiber → High Gain
- Over 1000 cm² of Si-strip detectors (28+) w/ Csl & ASIC electronics (Sobotka et al.)

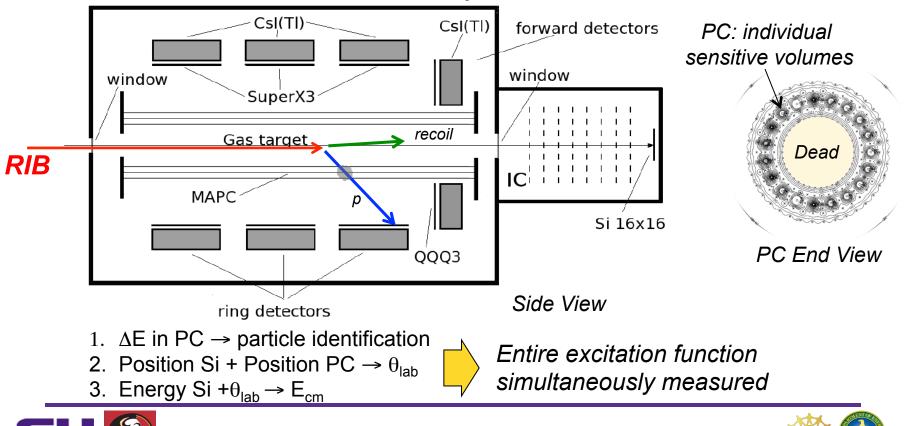


Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO₂ gas for (α ,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7μm diam carbon fiber → High Gain
- Over 1000 cm² of Si-strip detectors (28+) w/ Csl & ASIC electronics (Sobotka et al.)

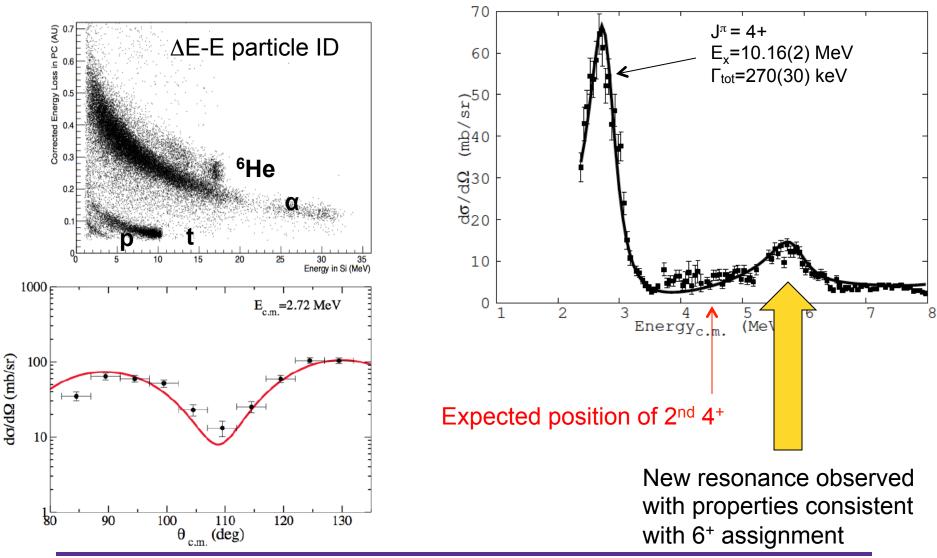


Nuclear Astrophysics at ATLAS - 7/13/19


Array for Nuclear Astrophysics and Structure with Exotic Nuclei

- Extended active gas target/detector
- He-CO₂ gas for (α ,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - $7\mu m$ diam carbon fiber → High Gain
- Over 1000 cm² of Si-strip detectors (28+) w/ Csl & ASIC electronics (Sobotka et al.)

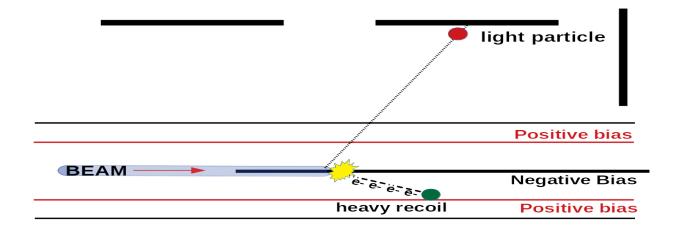
Array for Nuclear Astrophysics and Structure with Exotic Nuclei


- Extended active gas target/detector
- He-CO₂ gas for (α ,p) reaction studies
- Cylindrical proportional counter surrounding beam axis
 - 7μm diam carbon fiber → High Gain
- Over 1000 cm² of Si-strip detectors (28+) w/ CsI & ASIC electronics (Sobotka et al.)

⁶He+ α Scattering

A. Kuchera et al.

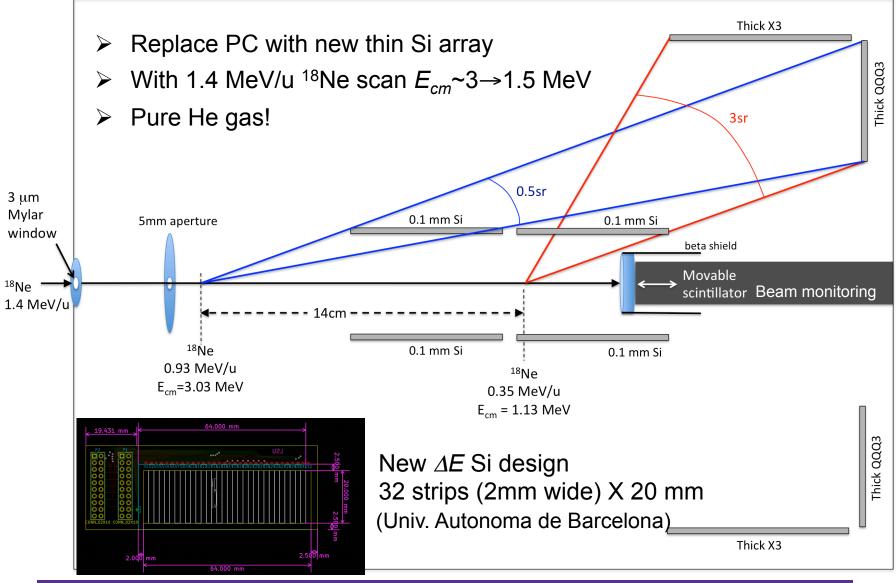
First ANASEN RIB active target measurement with ⁴He gas





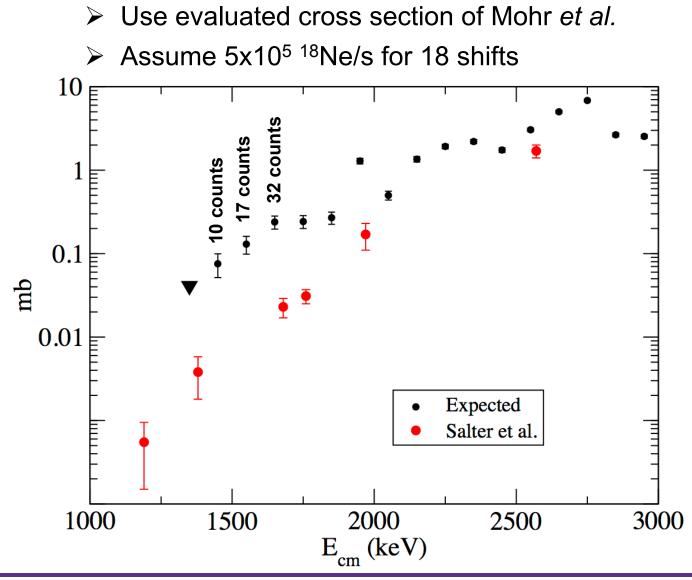
¹⁸Ne(α ,p)²¹Na with ANASEN

- Run in 2016 and 2018 at FSU
- ¹⁶O(³He,n)¹⁸Ne, E_{beam}(¹⁶O)=112.5 MeV
- E_{beam}(¹⁸Ne)= 72.34 MeV (4 MeV/A)
- Target : 96% ⁴He & 4% CO₂
- Intensity ~3,000 pps Purity ~14%

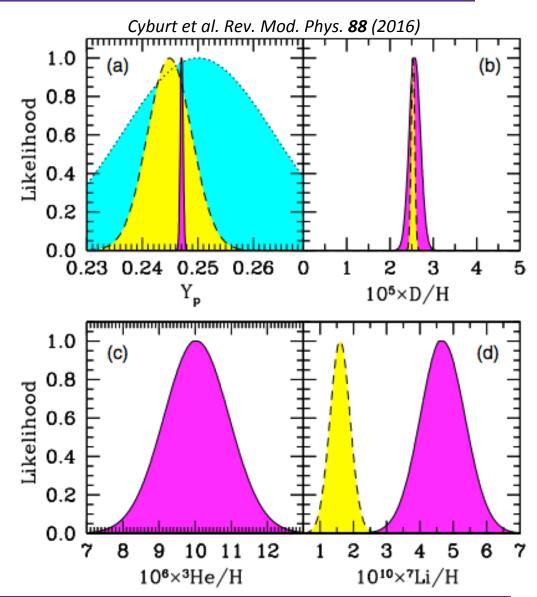


Encouraging Analysis So Far

- Strongest ¹⁸Ne(α ,p)²¹Na_{gs} resonance in LLN data clearly observed
- Possible yields extractable down to almost E_{cm}>1.5 MeV (low statistics)?
- Working now on efficiencies for 1p and 2p channels


S1773: ¹⁸Ne(α,p)²¹Na @ TRIUMF-ISAC

S1773: ¹⁸Ne(α,p)²¹Na @ TRIUMF-ISAC

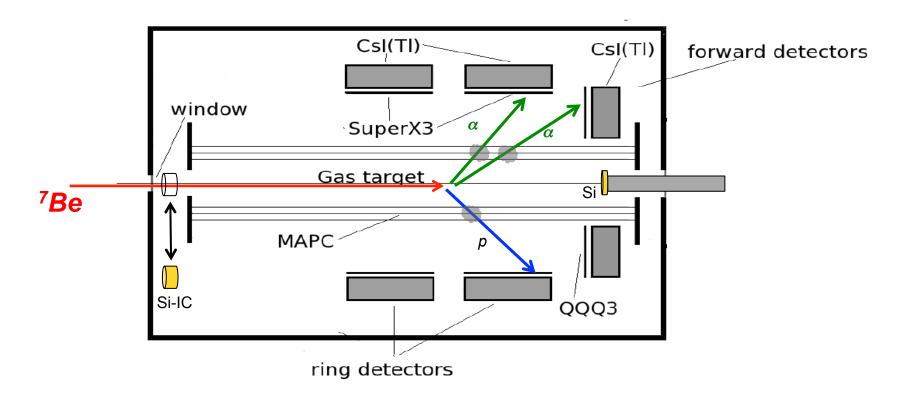


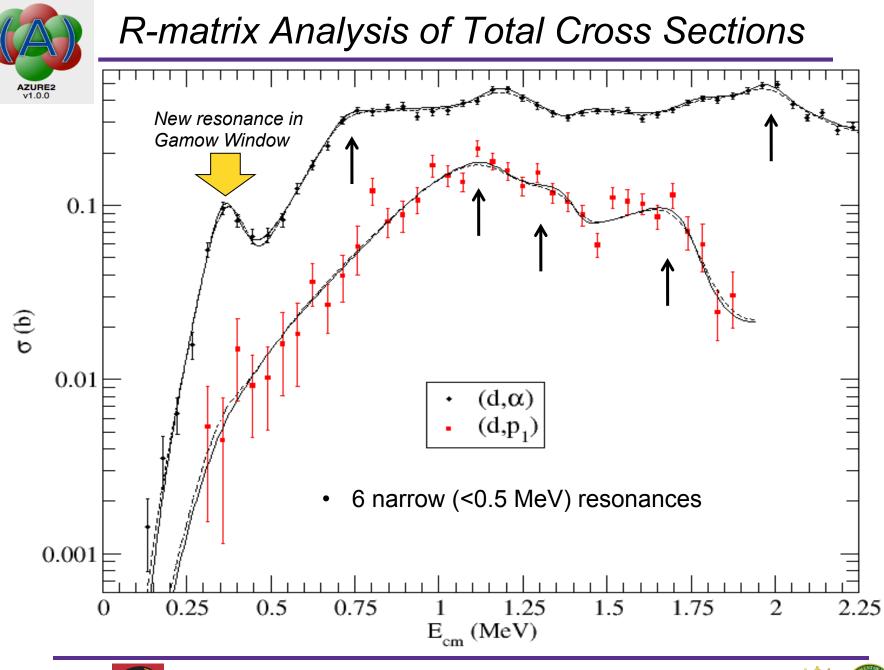
The Cosmological Lithium Problem

- ¹H, ²H, ⁴He in good agreement
- Li disagrees by more than 3σ

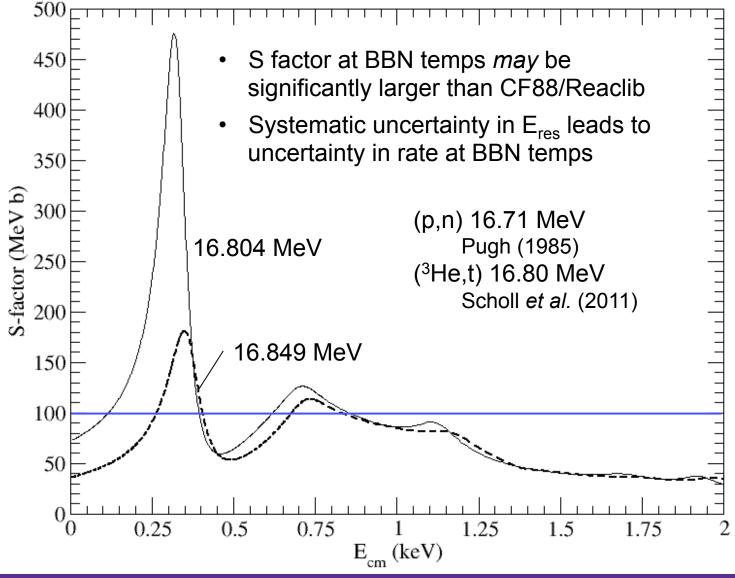
"All of the reactions that are ordinarily the most important for BBN have been well measured at the energies of interest. Typically, cross sections are known to ~10% or better, and these errors are already folded in."

Cyburt et al. (2016)

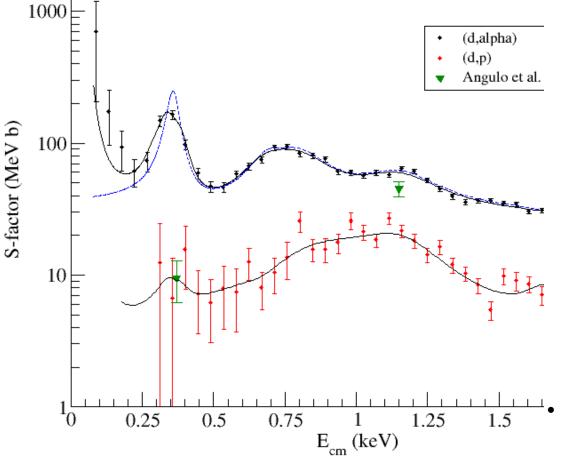



Early 2016: ⁷Be+d $\rightarrow \alpha$ + α +p

- Triple coincidence of light ions
- Gas IC Si hybrid detector for beam characterization
- Si detector at zero degrees
 - diagnostic
 - stopping power measurement



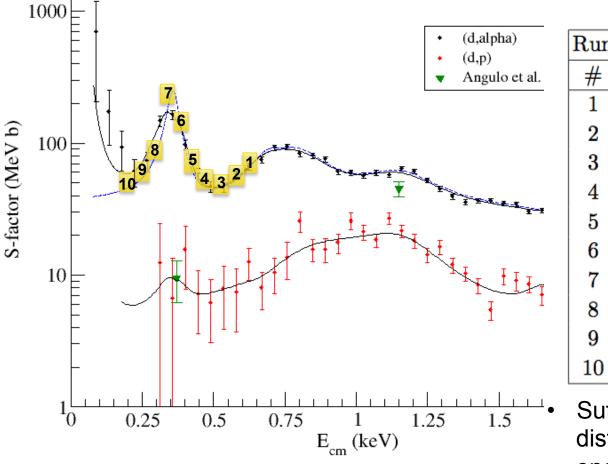
S factors



⁷Be+d $\rightarrow \alpha + \alpha + p$ @ TRIUMF-ISAC

- Propose to measure at 10 different bombarding energies
- Request 2x10⁶ ⁷Be/s post-stripped to 4⁺
- Assume cross section from ANASEN measurement

Run	E_7	E/u	E_{cm}	σ	Counts
#	MeV	keV	keV	\mathbf{mb}	$per \ 8 \ hr$
1	2.8	400	626 - 572	201	23200
2	2.6	37 1	581 - 527	143	16500
3	2.4	343	536-481	104	12000
4	2.2	314	492-435	86	9850
5	2.0	286	447-389	96	11100
6	1.8	257	402-344	122	14000
7	1.6	229	358-299	89	10300
8	1.4	200	313-253	39	4500
9	1.2	171	268-209	15	1700
10	1.05	1 <mark>5</mark> 0	234 - 177	6.7	770


Sufficient statistics for angular distribution in one shift at each energy (confirm J^{π} of state)

⁷Be+d $\rightarrow \alpha + \alpha + p$ @ TRIUMF-ISAC

- Propose to measure at 10 different bombarding energies
- Request 2x10⁶ ⁷Be/s post-stripped to 4⁺
- Assume cross section from ANASEN measurement

Run	E_7	E/u	E_{cm}	σ	Counts
#	MeV	keV	keV	mb	$\rm per \ 8 \ hr$
1	2.8	400	626 - 572	201	23200
2	2.6	371	581 - 527	143	16500
3	2.4	343	536-481	104	12000
4	2.2	314	492 - 435	86	9850
5	2.0	286	447-389	96	11100
6	1.8	257	402-344	122	14000
7	1.6	229	358-299	89	10300
8	1.4	200	313-253	39	4500
9	1.2	171	268-209	15	1700
10	1.05	1 <mark>5</mark> 0	234 - 177	6.7	770

Sufficient statistics for angular distribution in one shift at each energy (confirm J^{π} of state)

ANASEN at ATLAS

- ANASEN is (relatively) easy to transport
 - measurements performed at FSU, NSCL, and (soon) TRIUMF
 - all inclusive device chamber, detectors, electronics, DAQ
- Possible first experiment: ${}^{17}F(\alpha,p){}^{20}Ne$
 - previously measured at FSU with 10⁵ ¹⁷F/s (data under analysis)
 - RAISOR beam of 10⁶ ¹⁷F/s will allow for more statistics at astrophysically relevant energies
- Other direct (α ,p) measurements?
 - RAISOR beams need further development
- Indirect measurements
 - α scattering to determine resonant properties (e.g. ¹⁴O for ¹⁴O(α,p)¹⁷F)
 - transfer reactions

Rank	Reaction	Type ^a	Sensitivity ^b	Category
1	¹⁵ O(α, γ) ¹⁹ Ne	D	16	1
2	⁵⁶ Ni(α, p) ⁵⁹ Cu	U	6.4	1
3	⁵⁹ Cu(p, γ) ⁶⁰ Zn	D	5.1	1
4	${}^{61}\text{Ga}(p, \gamma){}^{62}\text{Ge}$	D	3.7	1
5	$^{22}Mg(\alpha, p)^{25}Al$	D	2.3	1
6	${}^{14}O(\alpha, p){}^{17}F$	D	5.8	1
7	$^{23}Al(p, \gamma)^{24}Si$	D	4.6	1
8	¹⁸ Ne(α, p) ²¹ Na	U	1.8	1
9	⁶³ Ga(p, γ) ⁶⁴ Ge	D	1.4	2
10	${}^{19}F(p, \alpha){}^{16}O$	U	1.3	2
11	$^{12}C(\alpha, \gamma)^{16}O$	U	2,1	2
12	${}^{26}Si(\alpha, p){}^{29}P$	U	1.8	2
13	${}^{17}F(\alpha, p){}^{20}Ne$	U	3.5	2
14	$^{24}Mg(\alpha, \gamma)^{28}Si$	U	1.2	2
	57	-		~

Cyburt et al., APJ (2016)

Summary

- Active target techniques like ANASEN are powerful for radioactive ion beam experiments
- > Multiple successful experimental campaigns, including:
 - ⁷Be+d study shows reaction helps (but does not solve) the cosmological Li problem
 - > $^{18}Ne(\alpha,p)^{21}Na$ measured at FSU for E_{cm} >2 MeV
- TRIUMF campaign planned for 2019 2020
 - ➤ S1849: ⁷Be+d measurement at and below new resonance
 - > S1773: ¹⁸Ne(α ,p)²¹Na at TRIUMF will measured down to ~1.4 MeV
- Possibilities for ANASEN @ ATLAS:
 - > ${}^{17}F(\alpha,p){}^{20}Ne$ direct measurement
 - $\succ \alpha$ -scattering studies with RIBs
 - other reaction studies . . .
- Sincere thanks to:
 - Collaborators and Faculty/Staff at FSU
 - The U.S. National Science Foundation and U.S. Department of Energy Office of Nuclear Physics

