Research Opportunities with HELIOS

Ben Kay, Argonne National Laboratory

Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019

Overview

The HELIOS spectrometer as a tool for nuclear astrophysics

- Nucleosynthesis => Direct reactions with RI beams
- Why the solenoidal spectrometer solution?
- HELIOS at ATLAS, so far
- Challenges and opportunities

Radioactive beams

\square rp process
\square p processs processr process

Reaction studies

~10 MeV/u (3-20 MeV/u), >104 pps (stable and radioactive)

Reactions used as a tool in nuclear astrophysics:

- Populate states / determine E, j"
- Cross sections \rightarrow rates
- Cross section \rightarrow overlaps
- Exploit mirror systems

Kinematics: normal vs. inverse

In contrast to normal kinematics

- Particle identification, $\Delta E-E$ techniques at low energies
- Energy dependence with respect to laboratory angle
- Kinematic compression at forward c.m. angles
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10^{6} orders of magnitude weaker

Kinematics: normal vs. inverse (resolution)

e.g. A. M. Laird et al., Phys. Rev. Lett. 110, 032502 (2013)
e.g. R. Talwar et al., Phys. Rev. C 93, 055803 (2016)

Kinematics: normal vs. inverse

Necessities: complex Si arrays, high intrinsic resolution, high angular granularity, low thresholds, large acceptance, often coincident gamma-ray detection, e.g., MUST-2 (GANIL), T-REX (ISOLDE), SHARC (TRIUMF), ORRUBA (ORNL), TIARA (GANIL), TUDA (TRIUMF), etc.

If conditions are favorable ...

Q-value resolution of 40 keV FWHM

- Beam: $6 \mathrm{MeV} / \mathrm{u}, 1$ pnA (6.25×10^{9} pps)
- Target: $50 \mu \mathrm{~g} / \mathrm{cm}^{2}$
- Highly idealized setup, afforded by very intense ${ }^{26}$ Al beam at TRIUMF
- Place detectors far way
- Annular Si detectors

Comment by John P. Schiffer, Proceedings of the Workshop on Experimental Equipment for an Advanced ISOL Facility, 1998

Transport through a solenoid

- A simple linear relationship between energy and z, where the energy separation is (nearly) identical to the excitation energy in the residual nucleus.
- Removes kinematic compression.
- Factor of ~2-3 improvement in resolution
-... and an MRI magnet seems ideal

$$
E_{\mathrm{cm}}=E_{\mathrm{lab}}+\frac{m}{2} V_{\mathrm{cm}}^{2}-\frac{m V_{\mathrm{cm}} z}{T_{\mathrm{cyc}}}
$$

Left photo: unknown, right photo: A. H. Wuosmaa
 2
-

New array and digital data acquisition

- New DAQ implemented in FY17, used at CERN in FY18, running now [current run ${ }^{29}$ Al(d,p)]
- New sort routines for 'quasi' live feedback (appreciated by users)
-New "complete system awareness" monitors

Snapshot

A highly versatile instrument

Apollo, gas target, ion chamber, backwards, forwards, tritium target, ... all routine

18F, isomers, rotation, "high" spin

$$
\begin{array}{cc}
18 \mathrm{gF}(1+)\left(d_{\mu} \mid \mathrm{p}\right)^{19 \mathrm{~F}} & 18 \mathrm{mF} \mathrm{~F}^{(5+)}\left(\mathrm{d}_{\mu} \mathrm{p}\right)^{19 \mathrm{~F}} \\
\boldsymbol{l}=\mathbf{0}, \mathbf{2} & \boldsymbol{l}=\mathbf{0}, \mathbf{2}
\end{array}
$$

Making an isomeric beam of $18 F$

Single-particle picture of ${ }^{19 F}$

Excellent agreement with shell-model calculations (perhaps not surprisingly).

Powerful technique, many future possibilities ... with AIRIS

Related equipment

ATLAS

- Stable beams at high intensity and energies up to $18 \mathrm{MeV} / \mathrm{u}$
- In-flight beams approx. $10<A<50$ at energies up to $15 \mathrm{MeV} / \mathrm{u}$
- Reaccelerated CARIBU beams at energies up to $\sim 15 \mathrm{MeV} / \mathrm{u}$
- Low energy CARIBU lbeams for 'stopped beam' measurements

The landscape

CARIBU, Cf-252

In the context of s - and r-processes

nuCARIBU, Am-241

In the context of s - and r-processes

nuCARIBU, Am-242

In the context of s - and r-processes

nuCARIBU, Pu-239

In the context of s - and r-processes

nuCARIBU, U-235

In the context of s - and r-processes

RAISOR-2019

In the context of ap-, rp-, p, s-processes
HELIOS + RAISOR is an excellent astrophysics synergy

RAISOR-optimum

In the context of ap-, rp-, p, s-processes
HELIOS + RAISOR is an
excellent astrophysics synergy

Challenges / opportunities

Reactions: often proton adding, He-induced, Li-induced reactions ... speaks to gas targets, low cross sections, etc.

Isomer beams:

${ }^{26} \mathrm{Al},{ }^{18} \mathrm{~F}$, ... more to come? ... ${ }^{34} \mathrm{Cl}$
Recoil detection: heavy beams, higher rates

Forward angle detection:

Challenges / opportunities

Upgrades planned: HELIOS was a first, built on a shoe string budget, hope to install new more flexible supports system for targets, auxiliary detectors ... aided by lessons learned/new solenoidal spectrometers

Closing comments

- HELIOS is an outstanding instrument for studying direct reactions in inverse kinematics
- ... has a high degree of flexibility
- ATLAS provides (and will provide ever more) beams that overlap exquisitely with astrophysical interests
- ATLAS + HELIOS have significant potential to address some key questions in nuclear astrophysics, both via specific/key measurements and by systematic studies
- We welcome users, and would prosper significantly from high-level engagement in HELIOS and a strong astrophysics program

Heliomatic ... beta ... v9

Check the feasibility of a given experiment in seconds ... even astrophysics-y ones

