Research Opportunities with HELIOS

Ben Kay, Argonne National Laboratory Workshop on Nuclear Astrophysics Opportunities at ATLAS 2019

Overview

The HELIOS spectrometer as a tool for nuclear astrophysics

- Nucleosynthesis => Direct reactions with RI beams
- Why the solenoidal spectrometer solution?
- HELIOS at ATLAS, so far
- Challenges and opportunities

<u>www.anl.gov/phy/helical-orbit-spectrometer</u>

Nuclei involved in the rp-, p-, and s-process M. S. Smith and K. E. Rehm, Annu. Rev. Nucl. Part. Sci. 51, 91 (2001)

Reaction studies

~10 MeV/u (3-20 MeV/u), >10⁴ pps (stable and <u>radioactive</u>)

<u>Reactions used as a tool in</u> <u>nuclear astrophysics:</u>

- Populate states / determine
 E, jⁿ
- Cross sections → rates
- Cross section → overlaps
- Exploit mirror systems

Kinematics: normal vs. inverse

In contrast to normal kinematics

- Particle identification, ΔE-E techniques at low energies
- **Energy dependence** with respect to laboratory angle
- **Kinematic compression** at forward c.m. angles
- Typically leading to poor resolution (100s of keV)
- ... and beams a few to 10⁶ orders of magnitude weaker

Kinematics: normal vs. inverse (resolution)

Forward endcap

30

Argonne

If conditions are favorable ...

- Beam: 6 MeV/u, 1pnA (6.25×10⁹ pps)
- Target: 50 µg/cm²
- Highly idealized setup, afforded by very intense ²⁶Al beam at TRIUMF
- Place detectors far way
- Annular Si detectors

Transport through a solenoid

6

- A simple *linear* relationship between energy and z, where the energy separation is (nearly) *identical* to the excitation energy in the residual nucleus.
- Removes kinematic compression.
- Factor of ~2-3 improvement in resolution
- ... and an MRI magnet seems ideal

$$E_{\rm cm} = E_{\rm lab} + \frac{m}{2}V_{\rm cm}^2 - \frac{mV_{\rm cm} z}{T_{\rm cyc}}$$

HELIOS

Left photo: unknown, right photo: A. H. Wuosmaa

New array and digital data acquisition

Daniel McNeel, Calem Hoffman, Ryan Tang, et al.

- •New DAQ implemented in FY17, used at CERN in FY18, running now [current run ²⁹Al(d,p)]
- •New sort routines for 'quasi' live feedback (appreciated by users)
- •New "complete system awareness" monitors

¹⁸F, isomers, rotation, "high" spin

Making an isomeric beam of ¹⁸F

Single-particle picture of ¹⁹F

D. Santiago-Gonzalez et al. Phys. Rev. Lett. **120**, 122503 (**2018**)

12

Excellent agreement with shell-model calculations (perhaps not surprisingly).

Powerful technique, many future possibilities ... with <u>AIRIS</u>

Related equipment

https://www.anl.gov/atlas

Nuclei involved in the rp-, p-, and s-process M. S. Smith and K. E. Rehm, Annu. Rev. Nucl. Part. Sci. **51**, 91 (**2001**)

Challenges / opportunities

<u>Reactions</u>: often proton adding, He-induced, Li-induced reactions ... speaks to gas targets, low cross sections, etc.

Isomer beams:

²⁶Al, ¹⁸F, ... more to come? ... ³⁴Cl

Recoil detection: heavy beams, higher rates

Forward angle detection:

Upgrades planned: HELIOS was a first, built on a shoe string budget, hope to install new more flexible supports system for targets, auxiliary detectors ... aided by lessons learned/new solenoidal spectrometers

Closing comments

- HELIOS is an outstanding instrument for studying direct reactions in inverse kinematics
- ... has a high degree of flexibility
- ATLAS provides (and will provide ever more) beams that overlap exquisitely with astrophysical interests
- in nuclear astrophysics, both via specific/key measurements and by systematic studies
- We welcome users, and would prosper significantly from high-level engagement in HELIOS and a strong astrophysics program

• ATLAS + HELIOS have significant potential to address some key questions

Heliomatic ... beta ... v9

•	••	AutoSave	OFF	6	 5	، ک	Ŧ		×	helio	
Но	me Ins	sert D	raw	Page	Layout	Fo	rmulas	Data	Review	v Vie	
V55		X V	fx								
A	В	С	DE	F	G	Н		I	J	К	
	R	EACTION					C	ALCULATE	D QUANTI	ES AND	
	REACTION	REACTION A ELEM.			Z MASS DEF MASS AMU N					MASS (M	
	BEAM (1) TARGET (2)	29 2	AI		13 1	-18.20 13.13	05 28.98 6 2.014	30456650 11016631		26995.3 1876.1	
	LIGHT (3)	1	Н		1	7.28	9 1.007	8249684		938.79	
_	HEAVY (4)	30	AI		13	-15.87	72 29.98	32960360		27929.1	
2	F RFAM	10	1		5	3 51	5 (MeV	`	1	Q VAL.	
2	L DEAM		3		MeV/A	10.000	00 (MeV)	2	#VALUE	
	B FIELD	2.5	(т)		Т(З)	2.6252	-08 (s)		3	#VALUE	
		EV			Ω(3)	2.39348	+08 (/s)		4	#VALUE	
, ,	EX LEVEL EX1	0.000	(MeV)			4.39430	+07 (m/s)		5	-0.485	
7	EX2	-	(MeV)		ECM	18.8449	042 (MeV)		CONSTAN	
8	EX3	-	(MeV)		<u>v(3)</u>	6.43588	+07 (m/s)		C	3.00E+0	
0	EX4 EX5	4.000	(MeV)		<u>v(</u> 4)	2.10350	(11/ 5)		ev MeV	1.60E-1	
1					тсүс	26.25	21 (ns)		amu	1.66E-2	
2	TGT.–Z MIN	0	(m)		TCYCR	60.07	72 (ns)		PI	3.14159	
3	TGT.–Z MAX	10	(m)		2	4.55F-	-08		A	8.3563E-	
5	I RADIUS DET.	0.011	(m)		ь	0.15	;		· ·	0.42	
,	BORE	0.460	(m)							15	
\$											
<i>*</i>)				QUAN	TITIES AT	A GIVEN CM ANGLE					
- 2	СМ	E1	E2	Z1	Z2	LAB	1 1	LAB2	RE1	RE2	
} L	34	7 564		-0 318		108 30	90		285.95		
5	22	4.832		-0.479		127.2	61		288.68		
	10	1									
3	22	1									
9											
0	10										
-	30 EV4	1									
3	10	1									
4	30	1									
5	EX5								201 50		
6	10	1.922		-0.411		147.9	97 27		291.59 288.60		
8		4.514		0.244		107.5	.,		200.00		
⁹ *If left blank (or any non-numerical character is entered) the charge state is assumed to be Q=e*Z_recoil.											
0	**Enter a multiplicatoin factor of the # of cycltron periods you want to see (non-integers accepted too). If Notes										
2	Now using A	AME2012 (v	4)								
3	Neutron bu	g fixed (v5)		(-10 004						
4	Added ATR ki	inematics	ndle pad	calcul	n19. 2014 ations		mass rmd	l.mas	+		
			_								

Check the feasibility of a given experiment in seconds ... even astrophysics-y ones

Disclosure: Ryan Tang [<u>ttang@anl.gov</u>] has a slightly better version

