Nuclear Astrophysics Research with SuN at ATLAS

Artemis Spyrou

MICHIGAN STATE UNIVERSITY

National Science Foundation Michigan State University

Nucleosynthesis processes

National Science Foundation Michigan State University Adapted from Frank Timmes / Hendrik Schatz

Nuclear Input for r-process

figure by M. Mumpower

National Science Foundation Michigan State University

Sensitivity to neutron-capture reactions

Nucleosynthesis in the i process

Sensitivity to neutron-captures

National Science Foundation Michigan State University Dennissenkov, et al., JPG 2018, Bertolli, et al. 2014

Neutron Captures within the Statistical Model

Hauser – Feshbach

- Nuclear Level Density (NLD)
- γ-ray strength function (γSF)

Dominate uncertainties

Large uncertainties further from stability

β-Oslo method:

- Combine traditional Oslo Method with Total Absorption Spectroscopy
- Use β -decay to populate the compound nucleus of interest
- Advantage: study nuclei far from stability

Traditional Oslo method

- Use reaction to populate the compound nucleus of interest
- > Measure excitation energy and γ -ray energy
- > Extract level density and γ -ray strength function (external normalizations)
- > Calculate "semi-experimental" (n, γ) cross section
- > Excellent agreement with measured (n, γ) reaction cross sections

- Populate the compound nucleus via β-decay (large Q-value far from stability)
- Spin selectivity correct for it
- \bullet Extract level density and $\gamma\text{-ray}$ strength function
- Advantage: Can reach (n,γ) reactions with beam intensity down to 1 pps.

Experimental Setup

$Ni(n,\gamma)$ systematcis

National Science Foundation Michigan State University Lewis, et al, PhD thesis 2019

Nuclear Input for r-process

• More sensitive probe: β strength

figure by M. Mumpower

National Science Foundation Michigan State University

r-process in neutron-star mergers

The pandemonium effect in action

% γ-ray emission

- Sensitivity study to identify important nuclei
- More measurements needed
- Impact on kilonova observations?

β-decay Intensity

β-decay Intensity

Neutron – γ competition

Artemis Spyrou, ANL, July 2019, Slide 19

Spyrou, Liddick, et al, PRL2016

Summary

- Exciting opportunities with SuN at ANL
- β-Oslo provides experimental constraints far from stability.
- Radioactive decay for kilonova Pandemonium
- Neutron-gamma competition

National Science Foundation Michigan State University

Collaboration

A.C. Larsen M. Guttormsen T. Renstrøm S. Siem L. Crespo-Campo Los Alamos

> A. Couture S. Mosby

NATIONAL LABORATOR

190

200

B. Rubio

University of Victoria

180

Lawrence Livermore National Laboratory

F. Herwig

D. L. Bleuel

P. Denissenkov